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  In the approximate 19 million cancers that are diagnosed each
year, one in every three cancers diagnosed is a skin cancer, with
~1.9 billion people worldwide suffering from some form of skin
condition. Many of these conditions have visually similar
symptoms but present differently on different types of skin,
specifically darker skin tones. This inconsistency leads to
misdiagnosis because most practicing dermatologists are trained
on lighter skin. 
 Furthermore, the small number of practicing dermatologists
means that general practitioners often see up to half of skin-
related cases. In fact, the predictive diagnostic accuracy of
general practitioners is as low as 24% while that of dermatologists
is as low as 77%, leading to inaccurate diagnoses, delays in care,
and errors in treatment. This issue is compounded by the fact that
existing datasets lack representation among darker skin tones,
resulting in a decrease in dermatological diagnosis accuracy
among existing machine learning models. 
  Fortunately, the rise of machine learning has allowed for the
creation of advanced neural network models that are capable of
assisting medical professionals in the diagnosis of various medical
conditions. Furthermore, the development of Generative
Adversarial Networks has allowed for the generation of
completely new images that are similar in appearance to real-life
images. 
 In our project, we used generative adversarial networks and
Convolutional Neural Networks to generate and classify dark-skin
images. 

Currently ~3 million non-melanoma skin cancers and
132,000 melanoma skin cancers occur globally each
year, a 44% rise in cases over the past decade.

Rising Case Numbers

In an MIT study of several dermatology atlases, there
were 3.6 times more images of the two lightest skin
types than the two darkest skin types. Additionally,
the study found that an average of only 89
represented diseases in darker skin types versus the
total 114 skin conditions in lighter skin types.

Lack of Data

These late, inaccurate diagnostics lead to inadequate
treatments, and according to a study from the AAD,
African Americans have the highest mortality rate for
skin cancer, having a lower 73% five-year survival
rate compared to 90% for light-skinned Americans. 

Diagnostic Bias

B Y  C A H A Y A  D E W I

Out of the two major types of skin cancer, Melanoma
is fatal and has an estimated five-year survival rate of
about 99% if detected early and 20% if detected late.
In the year 2018, there was an estimated 96,480 new
cases of melanoma and 7,230 deaths. Additionally,
Purpura is on the rise with significant jumps in
diagnosis numbers over the past few years.

Conditions



Scalability

GAN 

CNN

Quantity
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To expedite the diagnosis process and improve accuracy, healthcare professionals are turning to automated systems to aid
dermatologists in their diagnostics with the use of machine learning models, which have been proven to increase average
diagnostic accuracy by up to 63% in practitioners and 7% in dermatologists. These models are trained using compiled datasets
of patient images. However, existing datasets lack representation among darker skin tones, resulting in a decrease in
dermatological diagnosis accuracy of these models on darker-skinned images. The larger amount of lighter-colored skin
datasets available for dermatologists and the more common use of lighter-colored skin for dermatological studies and training
make these machine learning systems inadequate for use on darker-skinned individuals. Our project aims to address the lack
of darker skin image data for Melanoma and Purpura and the lower diagnostic accuracy on darker skin images by producing
more medically accurate darkskin images that can be used on future models for accurate and consistent results. 

Quality Accuracy
The impact of our project is
magnified by the number of
successful images we can
generate and ultimately
spread to skin condition
datasets and increase dark-
skin representation.

While quantity is important,
the quality of our generated
images is just as important,
as we want to make sure the
images are an accurate
representation of an actual
medical image. 

To validate our generated
images' usability in other
datasets and training, we
must ensure that our images
contribute to the training of
a model. Thus, we will train 
 a network of classifiers on
generated images and test
them on original skin images.

Our generator must be able
to consistently generate 
 accurate images for any skin
condition provided suitable
training data. Our network of
classifiers should be able to
train on and diagnose any
skin image data given an
adequate dataset 

Objectives

Algorithms

First implemented in 2014 by Ian Goodfellow, a generative adversarial
network or GAN is an unsupervised machine learning framework
consisting of two neural networks, a discriminator and a generator, which
operate in tandem to detect patterns and features in input data in order to
generate new examples similar to the original dataset. 

A CNN is a type of neural network classifier that uses convolution to
extract specific features from each image, much like the human brain
does. CNN offers performance benefits over classical neural networks
because a CNN is able to compress images while preserving the important
image details to improve performance. 

Figure 1: Architecture flowchart for a generative
adversarial network (GAN). 
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Briefly mentions a range of skin

tones in their dataset but does not

include figures that indicate

representation of darker skin tones

in both inputted and generated

images
Uses adaptation of Pix2Pix GAN

architecture
Accuracy was decreased in some

cases with the addition of the GAN
Added 20,000 synthetic images to

original training data of 49920

images. 
The overall performance is

comparable to the baseline, but the

performance on rare conditions like

Melanoma and Basal cell carcinoma

has noticeable improvement.

04Previous Work In Field

DermGAN
Synthetic Generation of Clinical Skin

Images with Pathology

Figure 2 (top): Accuracy & F1 Score for
DermGAN network with and without GAN.
Figure 3 (bottom): DermGAN network
architecture flowchart.

University of Toledo
Skin Cancer Detection using Generative
Adversarial Network and an Ensemble
of deep Convolutional Neural Networks

CAMP - Johns Hopkins
Generating Highly Realistic Images of
Skin Lesions with GANs

Used ISIC-2018 Dataset
99% light skin data

Uses ImageNet-pre-trained models
LAPGAN (Laplacian GAN)

Progresses up image size using
upscaled generated images as a
conditional comparison for the
next resolution step

DCGAN (Deep Convolutional GAN)
Progresses upwards through
convolution and transposition
layers until output resolution 

pGAN/ProGAN (Progressive GAN)
Downscales images then trains
on increasing resolutions for a
high-quality image result

Evaluated the quality of the PGAN
samples with expert dermatologists
and Deep Learning experts
Trained ignoring presence of
different types of skin tone

Classifies melanoma and benign skin

lesions with ~84% accuracy (#3), but

overfit on models #1 and #2.
3 Models

#1: Used DeBlur GAN and

traditional data augmentation on

grayscale images
#2: Used cGANs with ResNet-50

classifier on RGB images
#3: Used DCGAN and novel CNN

ensemble classifier on RGB

images

Similar sensitivity & specificity, low

accuracy among models due to

differences in input image color

space
Used selection of conditions from

HAM10000, which is a majority light-

skin dataset and one of the most

widely used for skin condition

training.

Figure 4: Original and generated image
using cGAN network of Model 2 in this
study.

Figure 5: Chart of real and generated
images with different GAN models used in
this study

Previous Work in Field
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Source Images 
We source our images from VisualDx, an
online dermatology atlas with a number of
dark-skin images. 

Image Organization
We upload the generated images to
folders in Google Drive, from which we
can easily access files from Google
Colaboratory. We split up the images into
80% train and 20% test for each condition
to prevent overfitting.

Template Input Generation
Using a novel feature detection algorithm,
we generate noise and feature template
inputs for each real image. The images are
then loaded into template image folders
for the condition.

Image Generation & Training
The random noise or feature images are
passed into our GAN to generate an image
based on the noise or feature template
image. We compare the generated image
with the original ground truth image for
GAN training.

B Y  C A H A Y A  D E W I

Classfication & Training
Generated images are resized and
reformatted between each model to train
the CNN ensemble.

VisualDX is a web-based clinical decision support system that is used in clinical
applications to help physicians diagnose and treat conditions in dermatology. 
 VisualDX claims that 28.5 percent of images are of individuals with skin tones
that fall within levels IV-VI of the Fitzpatrick scale, which means they are of
darker complexion [2].

Source Images

Image Organization
We download dark-skin condition images such as the ones shown in Figure 6
from VisualDx for Melanoma and Purpura and upload them to Google Drive
into a parent 'data' folder with separate training and testing labels. 

Figure 7: Image of our data organization folder hierarchy and data separation portions for

training, testing, and validation.

Data Acquisition & Flow

Testing

Test ground truth images are used to test
the CNN ensemble. If metric thresholds
are not been met, we will retrain.

Figure 6: Darkskin ground truth (real) images of Melanoma(left two images) and Purpura(right
two images) sourced from VisualDx
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The CNN Ensemble then trains on these training and testing images, and the quality of
each model in the ensemble is measured by running the model on real validation
images and calculating relevant metrics.

The template images are fed along with their real image counterparts to the training
loop of the GAN, which trains the GAN to generate realistic skin conditions given an
input noise or feature template image. When a certain image quality threshold has been
reached, 500 images are generated for each condition and separated into training and
testing data folders as shown in Figure 7.

Each ground truth (real) image that we pulled from VisualDx then has a corresponding
template noise image (phase 1) or a feature template image (phase 2) generated for it in
order to train the GAN. After the GAN has been trained, we use the novel noise
generator (phase 1) and template feature detector (phase 2) to generate a number of
random noise or template images to train the GAN for each condition. 

Template Image Generation

Classification and Training

Generation and Training

Figure 8: Flowchart of image data flow through GAN and diagnostic CNN.

Data Acquisition & Flow

Figure 9(above): Diagram of our
custom CNN Architecture with layer
input parameters and outputs

Figure 10: Original ground truth and
template feature image generated
from ground truth image.

Figure 11: Template feature image
and generated skin condition image
using phase 1 GAN.
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In phase 1, we used one GAN and one CNN to test our
general project framework on Melanoma only. 

Figure 13: Ground truth image and Phase
1 noise generator-generated noise image 
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For our generative adversarial network (GAN) model, we used a
novel algorithm based on the Pix2Pix architecture with two-
dimensional convolutions and LeakyRelu activation functions in
our generator and discriminator. 

We used a random noise
generator function to create
noise for each real image,
hoping that the GAN would be
able to generate features
based on random noise.  

Noise Generator
GAN: Generative Adversarial Network

using novel Pix2Pix architecture
CNN: Convolutional Neural Network

computationally efficient, quick feature detection,

decent accuracy

Elements:

Figure 12: Flowchart for the network architecture of Inceptionv3 which shows the
different processing methods and functions used in order from input to output.

Creating noise templates for each image
Evaluating noise templates to generate similar images

based on noise template
Classifying images into given conditions  (Melanoma

vs Non-Melanoma) to make a diagnosis

Our steps included: 

Methods - Phase 1
Noise Test

Generative Adversarial Network (GAN)

Convolutional Neural Network (CNN)

Figure 14:  Flowchart for the network architecture of Inception which shows the process of
image inputting, what steps are taken between layers, and the output.

We used Inceptionv3 as our CNN model for training on large
datasets including skin images. To save time and resources from
having to train multiple machine learning models from scratch to
complete similar tasks, we used transfer learning, which retrains
a high fidelity pre-trained model on our dataset.

Figure 15: This is a flowchart for the network architecture of Inception which shows the
process of image inputting, what steps are taken between layers, and the output.

A true positive is a case where the model correctly
predicts the class for the condition being evaluated or
positive class. On the other hand, a true negative is when
the model correctly predicts the negative class. A false
positive is when the model incorrectly predicts the
positive class when the true class is negative, and a false
negative is when the model incorrectly predicts the
negative class when the true class is positive.

CNN Metric: Evaluating a Confusion Matrix
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Figure 18: Noise input image #1 generated from ground truth and the

predicted image from noise template.

Figure 19: Noise input image #2 generated from ground truth and the

predicted image from noise template.

GAN Results

08Results 1

Discussion

Melanoma
True Negative

False Positive True Positive

False Negative

Figure 16: Confusion matrix representing True Negatives, False
Negatives, False Positives, and True Positives for our custom
Melanoma CNN.

CNN | Confusion Matrix Heat Map

From the GAN results, the images are clearly artificially generated but
possess a strong resemblance to real melanoma images that the GAN was
trained on. As shown in Figures 18 and 19, the same ground truth with
different noise images can yield different predicted images. Looking at
the CNN Confusion Matrix results in Figure 16, we see an f1, recall,
accuracy, and precision score all in the vicinity of 64%, showing that our
CNN trained well purely on the images generated by our GAN. Based on
the results, we determined that the noise images were bottlenecking the
success of the GAN and switched to a novel feature detection method to
generate better template images, which led to better results in phase 2.

Figure 17: Plot of Validation Accuracy (Blue), Training
Accuracy (Yellow) across each epoch, a portion of the dataset.
The red line represents a guessing accuracy of 50%. The
green line marks the epoch with the highest accuracies.

Phase 1 Results

f1 score: 
0.64
recall: 
0.64
accuracy: 
0.647059
precision: 
0.64
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We replaced our random noise generator with a
novel feature detector that generates image-specific
template images to better train the GAN.
We used a CNN Ensemble consisting of 4 CNN
models: Inceptionv3, ResNet50, DenseNet121, and
our own custom model

In phase 2, we drew insights from our results from
phase 1 and implemented a few key changes:

Generative Adversarial Network (GAN)
For our phase 2 GAN model, we used the pixel-to-pixel or Pix2Pix
GAN architecture. Conditional GANs including Pix2Pix use a
convolutional network model called U-Net to segment images,
convoluting the image with an activation function down into
smaller sections until a certain size is reached, from which point
the image will be convoluted upwards, raising the size of each
section until the resolution of the original image has been reached.

Novel Feature Detection

We used a variety of Keras-based models in our ensemble, which
included Inceptionv3, ResNet50, DenseNet121, and our custom
model. In order to connect all of the models together, we used
ensemble learning. Due to the smaller number of dark-skin images
currently available, we used ensemble learning to exploit
available training data by forming a final diagnosis output by
merging the output results of each CNN, which eliminated
network-specific biases and increased output classification
accuracy compared to individual model accuracies.

CNN Ensemble

09Methods 2

We implemented a novel feature detection algorithm using
algorithmic object detection to generate feature template images
for our GAN to train on.

Feature Detection Algorithm
GAN: Generative Adversarial Network

using novel Pix2Pix architecture
CNN Ensemble

Testing 4 different models for composite metrics

Elements:

Figure 22: Ground
truth image, Phase 2
feature detector-
generated template
image

Figure 23: Pix2Pix

Architecture for

GAN consisting of

the U-net based

generator and

PatchGAN based

discriminator.

Figure 20:

Flowchart for

our

implement-

ation of a CNN

Ensemble

connected via

ensemble

learning.

Figure 21: 
 This is a
flowchart for
the network
architecture
of ResNet50.

Methods - Phase 2

While GANs do not have a solitary loss function as CNNs
do, they can still optimize by means of a loss function,
which evaluates how much the output images deviate
from actual results. Larger discrepancies between the
two mean a larger loss number while small
discrepancies result in a low loss value.

GAN Metric: Evaluating GAN Loss
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Figure 24: GAN Discriminator Loss function graph.

Figure 26: GAN Generator Loss function graph
(all images)

Figure 27: Total GAN Loss function graph.

Figure 30: Ground truth image, Phase 2 feature detector-generated
template image, and GAN generated Purpura training image on
template image.
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Figure 28: An array of generated melanoma images from our GAN
using phase 2 random generated feature detection template images.

Figure 25: GAN Generator Loss per image
function graph.

10Results 2

The discriminator and generator
losses are loss metrics from the
two parts of the GAN that generate
images and evaluate their
accuracy. The graphs, denoted by
Figures 24 through 27, show that
the GAN trained effectively.
Indicated by our discriminator
loss graph which varied from 0.3
to 1.1 and had an average of
~0.693, this average loss value
means that the discriminator
could not differentiate the GAN's
generated images from real
images. Furthermore, as shown in
Figures 28 - 31, the generated
images clearly look  more similar
to real skin images when
compared with the GAN from
phase 1. The efficacy of the
template images compared to the
input images in combination with
the improved GAN showed a
clearer and more accurate
diagnostic shape of the affected
area and more accurate colors
compared to the ground truth
image. These improvements were
also reflected in the CNN training
results. 

Figure 29: Ground truth image, Phase 2 feature detector-generated
template image, and GAN generated melanoma training image on
template image.

Phase 2 Results

Template Our Melanoma GAN Our Purpura GAN
Figure 31: Randomly generated feature detector template image and
generated images using Melanoma GAN (middle) and Purpura
GAN(right).

Using a GAN and an ensemble of CNNs to More Accurately Generate and Diagnose Skin Condition Datasets in Diverse Skin Types



True Negative

False Positive True Positive

False Negative
Melanoma

True Negative

False Positive True Positive

False Negative
Purpura

Discussion

CNN Ensemble Confusion Matrices

Figure 33, 34: Confusion matrices for Melanoma (top, 28) and Purpura (bottom, 29)
representing True Negatives (top left), False Negatives (top right), False Positives (bottom left),
and True Positives (bottom right) for our custom Melanoma CNN.

11Results 2

Figure 32: Plot of Train Accuracy (Blue), Validation
Accuracy (Yellow) across each epoch.  The Y axis is the
accuracy of the model and the X axis is the epoch #.

As shown in Figure 32, the validation and
training accuracies were highly consistent,
showing that the CNN ensemble did not overfit
like in phase 1. 

The confusion matrices shown in Figures 33 & 34 show higher true negative and true positive rates, with lower false positive and
false negative rates. With Melanoma scores around 85% in f1, recall, accuracy, and precision, and Purpura scores around 74% in f1,
recall, accuracy, and precision, the models prove to be remarkably accurate on field data. Furthermore, as shown in Figures 35 and
36, our GAN-generated images significantly improved CNN performance vs training solely on available field data images. 

Phase 2 Results

True Negative

False Positive True Positive

False Negative True Negative

False Positive True Positive

False Negative

Figure 35, 36: Confusion matrices for Melanoma (top, 28) and Purpura (bottom, 29) representing
True Negatives (top left), False Negatives (top right), False Positives (bottom left), and True
Positives (bottom right) for a CNN trained solely on available real images (excluding GAN-
generated images).

F1 Score

0.86 0.84 0.88Melanoma

Recall Precision Accuracy

0.86

Purpura 0.73 0.72 0.750.75

Condition
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Extraneous Features:
Certain images have shadows or dark
areas that aren't due to features we want
to target, but are detected as such, which
decreases the accuracy of the detector and
may harm GAN training performance. 
A solution for the extraneous features
problem is creating a radius around
which features would be ignored, as well
as calculating the eccentricity and
smoothness of the features to differentiate
actual from noise.
Future Research

Sources of Error

For our phase 1 results, while the GAN generated images are clearly artificial, they possess a strong resemblance to real
melanoma images that they were trained on. Our CNN Confusion matrix heat map for evaluation showed an f1, recall, accuracy,
and precision score all in the vicinity of 64%, meaning our CNN trained decently purely on the images generated by our GAN. In
phase 2, our novel feature detection algorithm, modified GAN, and new CNN ensemble proved to increase our metrics
significantly, with confusion matrix metrics all-around 85% for Melanoma and 74% for Purpura. Thus, the models proved to be
fairly accurate on field data. 

Works Cited:
[1] https://arxiv.org/abs/1611.07004
[2] https://arxiv.org/abs/1911.08716
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Overfitting:
Overfitting is when a model essentially
begins to memorize the specific training
set, causing training accuracies to soar
while validation accuracies fluctuate
wildly. Overfitting is present in the CNN
of phase 1. Some ways to combat
overfitting include introducing dropout
layers into the model which force the
model to generalize, increasing the
amount of data used, or altering the
learning rate to decrease the network's
tendency to overfit
Generalization Error:
As shown by our fluctuations in phase 2
Generator Loss, there is a high variance in
generalization, meaning that the
generator is not efficiently using its past
generalizations on the newer images.
Solutions for the generalization error
include altering the structure of the GAN
model or utilizing a different base model
architecture, such as CycleGAN. 

Conclusion

Limitations

Despite our identified sources of error, we were still able to create a novel feature detection algorithm that generated highly
compatible template images for our GAN, which in turn was able to generate accurate and quality images of Melanoma and
Purpura. Finally, our CNN ensemble including our own custom model was able to train on our GAN generated images and
classify new ground truth images with higher accuracy than both general practitioners and dermatologists. 

Overall, our results demonstrate that
our GAN is able to produce images that
accurately mimic the diagnostic
characteristics of Melanoma and
Purpura, two conditions that are
present differently in dark skin
individuals and are often diagnosed at
a less frequent rate. Furthermore, we
have successfully used this data to
train a CNN Ensemble to differentiate
two similar skin conditions.
Applications of our work include using
GANs to generate accurate medical
training images for dermatologists
using limited available data. The
implications of this work include
reducing inequality for darker skin
individuals who lack representation in
medical training images as well as
providing a diagnostic tool to aid
dermatologists in diagnosing skin
conditions. 

Applications

Summary:

Using a GAN and an ensemble of CNNs to More Accurately Generate and Diagnose Skin Condition Datasets in Diverse Skin Types

We would like to see the metrics of
different GAN architectures in the future
including ProGAN, DCGAN, and CycleGAN
compared to our own GAN. Additionally,
training on and evaluating results for
more conditions with higher resolution
images would be insightful into the
scalability of our GAN. 

https://arxiv.org/abs/1911.08716

